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Abstract

In this paper we propose a method for accurate localiza-
tion of a multi-layer LiDAR sensor in a pre-recorded map,
given a coarse initialization pose. The foundation of the al-
gorithm is the usage of neural network optical flow predic-
tions. We train a network to encode representations of the
sensor measurement and the map, and then regress flow vec-
tors at each spatial position in the sensor feature map. The
flow regression network is straight-forward to train, and the
resulting flow field can be used with standard techniques
for computing sensor pose from sensor-to-map correspon-
dences. Additionally, the network can regress flow at dif-
ferent spatial scales, which means that it is able to handle
both position recovery and high accuracy localization. We
demonstrate average localization accuracy of <0.04m po-
sition and <0.1◦ heading angle for a vehicle driving appli-
cation with simulated LiDAR measurements, which is simi-
lar to point-to-point iterative closest point (ICP). The algo-
rithm typically manages to recover position with prior error
of more than 20m and is significantly more robust to scenes
with non-salient or repetitive structure than the baselines
used for comparison.

1. Introduction
With the introduction of high performance driver assis-

tance systems and automated driving functionality, the re-
quirement on exact position knowledge has increased to
the point where satellite-based localization must be coupled
with costly correction services to provide adequate accu-
racy. Even then, such solutions are subject to severe avail-
ability and reliability issues, due to various problems in-
cluding multi-path signals and signal outages in challenging
conditions.

A common alternative for high precision localization is
to map areas of interest, and then localize relative the pre-
recorded map. The LiDAR sensor is robust to illumina-
tion and texture variability, which is an important advantage
compared to camera sensors for the localization task. Fur-

thermore, the LiDAR sensor is useful in other tasks, such
as object detection and tracking, which makes it a practical
choice for autonomous vehicles.

Most localization methods divide the problem into a po-
sition retrieval stage, commonly referred to as global local-
ization, and a local refinement stage. The coarser global lo-
calization is often left to external sensors such as satellite-
based positioning, but there are LiDAR-based position re-
trieval methods, such as PoseMap [9] which encodes a
whole scene into a descriptor and retrieve position by find-
ing closest matches in descriptor space. Our method mostly
qualifies as a local refinement algorithm, but with extended
capabilities to compute position also when prior pose infor-
mation is inaccurate.

Early LiDAR localization methods [15, 16] use template
matching to find the rigid transform that maximizes corre-
lation between the sensor data and the map. To achieve this,
both sensor and map points are projected into 2D images
from a top view perspective, and templates resulting from
all transforms in a discrete search space are correlated with
the map. Localization accuracy is generally sub-decimeter,
but the search space must be constrained for computational
complexity reasons, meaning that an accurate sensor pose
prior is required.

Another option for LiDAR localization is to apply a point
cloud registration method. A large body of registration
methods finds a set of correspondences, i.e. pairs of match-
ing features in sensor data and map, and computes the rigid
body transformation that best aligns sensor data with the
map [2,10,29,31,32]. Iterative closest point (ICP) methods
[4, 23] do repeated closest distance searches to determine
correspondences, and step-by-step approach an alignment.
ICP and related methods suffer from a tendency to converge
to a local minimum when initialization is inaccurate, and
from their repeated, computationally costly correspondence
searches. Fast global registration (FGR) [33] addresses such
shortcomings by computing correspondences once, using
local feature descriptors, and directly solves for the pose
by minimizing a global objective. FGR is fast and less af-
fected by the problem with local minimums, but it is sen-
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Figure 1: Schematic view of the localization pipeline for
one resolution level. The 2D projection is normally sparse,
especially for the LiDAR measurement, and the U-Net
CNN that up-samples pooled features results in a dense
feature representation. The correlation module is non-
trainable and provides similarity measures for the neigh-
borhood around each input grid position, which are used
to regress the flow field that allows pose to be computed.

sitive to incorrect or ambiguous correspondence matches.
Recent registration literature has applied deep learning to
encode better performing descriptors [29, 31, 32] and to de-
tect key points whose descriptors are likely to form accu-
rate matches [29, 31]. While this has led to significant im-
provements in descriptor performance for registration, en-
coding of point descriptors that capture both the large struc-
ture shape required for global matching and the fine detail
for precision localization remains unsolved to the best of
our knowledge.

In this paper we combine ideas from learning based cor-
respondence registration with efficient 2-dimensional data
representations and optical flow methods. The proposed
method yields robust localization performance, even with
initial errors as high as 20m, combined with accuracy com-
parable to the best local registration methods, and high com-
putation speed. An overview image of the method architec-
ture is shown in Figure 1.

Specifically, we process 2D projections of sensor and
map point clouds in trained U-Net [22] CNNs, providing
dense feature maps with large receptive field. Correspon-
dences are then regressed as a flow field between the im-
ages, using a neural network structure and correlation mod-
ules similar to those used for optical flow computations
in FlowNet [12] and PWC-Net [26]. We thus avoid com-
putationally costly global searches for correspondences in
descriptor space and shift the complexity to an optionally
GPU-accelerated regression network. To increase accuracy
and robustness to outliers, we regress uncertainty measures
for each correspondence vector and use them as importance
weights when computing the final pose. Global localization
capabilities are achieved by a variant of the pyramid struc-
ture from PWC-Net [26], which serves to find a coarse pose
estimate from an uncertain prior and gradually refines the
pose.

To summarize, our contribution is three-fold: 1) We de-
scribe an optical flow formulation of the LiDAR localiza-
tion problem, which leverages on learning-based optical
flow and the U-Net architecture, making the method com-
putationally efficient. 2) We apply a coarse-to-fine model
structure for correspondence localization, that achieves high
accuracy while being relatively insensitive to prior knowl-
edge about the sensor position. 3) We demonstrate the use
of regressed uncertainty measures for each correspondence
vector to weigh their influence in the final pose computa-
tion, as such contributing to outlier insensitivity and im-
proved localization accuracy.

2. Related work
Most LiDAR localization methods, including ours, use

an off-the-shelf solution, such as a GPS receiver, to pro-
vide a initial position estimate that is subsequently refined
by the method in question. We compare our method against
local refinement methods which include purpose-made Li-
DAR localization methods and the larger body of generic
point cloud registration methods.

2.1. Lidar Localization

A family of LiDAR localization methods is based on the
2D projection of LiDAR sensor data and map, where local-
izing is done by finding the alignment transform that max-
imizes correlation between the two images. Correlation is
computed at each pose in a discrete search space to find
the maximum correlation pose. In practise due to computa-
tional cost, this means it is necessary to make a compromise
between small search radius and accuracy. The method by
Levinson et al. [15, 16] uses laser reflection intensity in the
map and discards the vertical coordinate. The same concept
is expanded with deep learning methods in [3] where map
and sensor data are encoded with a trained network. Our
method makes use of 2D projections and correlation com-
putations, but relies on shape rather than intensity to encode
feature maps and uses a coarse to fine approach to avoid
issues with constrained search spaces.

A 3D version [20] of normal distribution transform
(NDT) [5] finds the pose by representing the point cloud
map as a piece-wise continuous function in a voxel grid, to
which the sensor points are aligned by minimizing a global
objective. To achieve reasonable computation times, the
voxel grid is typically made coarse which may limit accu-
racy, but the convergence valley extends beyond the 1-2m
search radius of typical local refinement algorithms.

L3-Net [19] uses 3D structure tensors to detect salient
features in the online LiDAR measurement and matches
only the most distinct points to the map by patch correla-
tion. Different pose hypotheses are evaluated locally for
all the extracted key points and the results are aggregated
in a matching volume where the most likely pose can be



inferred. High localization accuracy is obtained, but like
[3, 15, 16] the method is limited to local refinement.

SegMap [8] is a correspondence-based LiDAR local-
ization method which clusters point clouds into segments
that are encoded, classified, and used for correspondence
matching if they fulfil certain requirements. The method
achieves high matching performance when distinct seg-
ments are available. Likely due to some variability in the
segment clustering, its localization accuracy does not reach
sub-decimeter levels, but on the other hand the method is
capable of global localization.

Visual odometry methods based on LiDAR [17, 27, 28]
typically register scans using standard point cloud registra-
tion methods, further described in section 2.2. While such
methods bear resemblance to localization, the scope is typ-
ically limited to consecutive scan matching, and sometimes
restricted to LiDAR inherent spherical space [27,28], which
is unsuitable for localization.

2.2. Point cloud registration

For a point cloud registration method to be suitable for
precision localization, it must handle the difference in point
density between sensor and map point clouds, and it must
also handle that the sensor data only overlaps with a part
of the map. These requirements lead to correspondence
matching methods, where correspondence candidates from
non-overlapping parts of the data can be detected and disre-
garded.

The class of iterative closest point (ICP) registration
methods [4, 23] establishes correspondences based on clos-
est distance measures and computes a pose in an iterative
fashion. As such, ICP-methods are prone to converging to a
local solution, and can be computationally expensive due to
the need to re-compute correspondences iteratively. Global
search extensions can be used to perform registration un-
der larger position uncertainty, for example the branch-and-
bound algorithm of [30], but such methods incur increased
computation time.

An important branch of point cloud registration algo-
rithms uses feature descriptors to form correspondence
matches in descriptor space. Capable descriptor encoders
allow finding correct correspondences without iterating
through intermediate pose transforms, which can have great
impact computation time, as demonstrated in [33]. Another
consequence is that it is possible to make algorithms less
sensitive to initialization and incorrect local solutions.
Learning 3D feature descriptors. Encoding of 3D struc-
ture descriptors in a way that results in distinct correspon-
dence matching is not trivial. Recent registration meth-
ods [2, 10, 14, 18, 29, 32] train neural networks to compute
descriptors such that corresponding features closely match
in descriptor space. The commonly used [1, 14, 18, 21, 31]
PointNet descriptor encoder directly consumes a set of

points, often partitioned into smaller local neighborhoods
to form descriptors for different points. Unlike a traditional
CNN, whose receptive field can quickly grow through the
convolution chain, the receptive field of a local PointNet
descriptor is bound by its input points. Unless such descrip-
tors are further processed, the limited receptive field may
limit the global localization capabilities.

Another option for encoding descriptors, without lim-
iting the receptive field are different flavors of continuous
convolution operators, as used in [2, 29]. Continuous con-
volutions do not require a voxelization of the point cloud
but are harder to optimize for speed on a GPU. The fea-
ture encoder of [6] discretizes the point clouds into voxel
grids with simple hand crafted features in each populated
voxel, which allows using 3D convolution operators, mod-
ified for sparse input, to compute a descriptor at each pop-
ulated voxel. The feature encoder of our method can be
viewed as a 2D adaptation of [6], with lowered computa-
tion times as a result of the decrease in dimension.
Correspondence matching. Correspondences between
point sets are in general not exact one-to-one mappings, i.e.
the same point is not available in both sets, which arises
due to the variation in sampling of points, partially over-
lapping sets, or different sampling densities (as is common
in LiDAR localization). Therefore, pair-wise closest dis-
tance correspondences may lead to inaccurate or completely
failed registration. As a counter-measure, some descrip-
tor correspondence methods [32] find soft matches such
that each source point is matched with several destination
points, along with matching scores to weigh the correspon-
dences when computing alignment transforms. Such ex-
tensions solve major issues with descriptor space matching,
but the results are still limited by inaccurate point-to-point
matches.

An alternative to descriptor space matching is to com-
pute correspondence vectors, where only one or neither of
the matched positions are actual points in the input point
clouds. A simple example are ICP-extensions [23] that
match points from the source input to planes in the desti-
nation. DeepVCP [18] computes tensors of descriptor dis-
tances between each source point and a set of different des-
tination position hypotheses. The tensors are processed in
a CNN that regresses correspondence vectors. Our method
implicitly uses descriptor correlation as distance measure,
and the 2D formulation allows correlation tensors to be
computed in a discrete search space that is limited to the
horizontal plane. Furthermore, our coarse to fine approach
results in a significantly larger search space for correspon-
dences, yet with a bounded increase in computation cost.

When parts of the point clouds contain little or no salient
structure, feature descriptors become indistinct which re-
sults in matching uncertainty. A common solution [2, 18,
29, 31] is to use attention mechanisms to learn to detect



points that are good candidates for correspondence match-
ing and then give reliable correspondences higher impor-
tance in transform computation. Our method weighs flow
field components by regressing uncertainty distribution pa-
rameters for each flow vector, using a log-likelihood loss as
described in [11].

3. Method
Our method solves the localization problem by first esti-

mating a flow field between the sensor and map coordinate
frames, and then using the flow field to compute the sensor
location, i.e., to estimate how far off our prior location is
in terms of translation and angle. Specifically, we discretize
the sensor and map cloud data into 2D grids from a top-view
perspective with handcrafted features for each grid cell. We
then use a neural network to regress a flow field, i.e., a set
of 2D vectors that estimate the translation of the center of
each grid cell in the sensor image into the map coordinate
frame.

We assume that the map is available as a point cloud,
and that the vertical direction of the sensor is known, so
its data can be transformed into a coordinate system whose
vertical axis is aligned with the gravitational axis. Further-
more, we require a prior on the sensor pose that is accurate
within approximately 20m, and 20◦ heading angle. Nor-
mally, such a prior is available from satellite-based local-
ization, or from inertial odometry based on a previous lo-
calization. The prior position defines the center point of the
area of the map to extract for feature image construction.

Figure 1 summarizes our method, including the key com-
ponents from the input point clouds. Using top-view projec-
tions of sensor data and map crop, feature maps are com-
puted for both inputs. Since the 2D projection of a point
cloud is in general sparse, we apply a U-Net [22] with skip
connections to encode dense feature images with large re-
ceptive fields, capable of capturing large structure features.
The subsequent flow field regression follows the outline of
the FlowNetC model introduced in [12], where the key com-
ponent is a correlation volume computation. A CNN is then
used to regress flow vectors and associated covariance ma-
trix parameters from the correlation volume output. From
the regressed probabilistic flow field, the rigid transform is
computed as the maximum likelihood-estimate of the pose.

The following sections describe further details of the
method.

3.1. Data pre-processing

To cast the problem into the optical flow formulation, we
need to transform the input points from sensor and map to
appropriate coordinate systems. Using the prior information
of the sensor’s vertical axis and its heading we define trans-
form operator TES that is used to rotate points expressed in
the sensor coordinate frame S to the error frame E, which

is aligned with the map axes, but with a remaining error in
heading due to the prior error. The map points are extracted
from a square area in the map centered in the prior position,
and then translated from the map coordinate frameM to the
crop frame C with origin in the prior position by construct-
ing TMC and applying its inverse on the extracted points.
The sought sensor pose transform TMS , relative the map
coordinate frame M , can be computed as

TMS = TMCTCETES (1)

where TCE is the to-be-computed pose correction trans-
form that aligns the rotated sensor points with the translated
map crop points.

The transformed point sets are partitioned into 2-
dimensional grids in the horizontal plane, where the sen-
sor grid contains Ws × Hs cells. The map grid is a larger
Wm×Hm size to support flow vector end points outside the
sensor grid borders. For each grid cell, we compute feature
vectors x = [n, z̃, σ]T of the number of contained points
n, mean z̃ and standard deviation σ of the points’ vertical
coordinates, resulting in sensor and map input tensors EXs

and CXm.

3.2. Flow field regression

For a given resolution level l, the corresponding flow
field regressor function (FCE ,θΣ) = f (l)(EXs,CXm) is a
neural network that outputs 2×W (l)×H(l) flow field tensor
FCE and 3×W (l)×H(l) flow covariance parameters tensor
θΣ. We enumerate each spatial grid cell in the output ten-
sors with the index i ∈ [1, N (l)] where N (l) = W (l)H(l).
We use the index to denote fi, the flow vectors from each
grid cell of FCE , θi, the parameters of the covariance ma-
trix for each flow vector, and pi, the grid cell center point.
The neural network is trained with ground truth flow fields
Fgt using a log-likelihood loss

L(θΣ,FCE ,Fgt) =

N∑
i=1

log(detΣ(θi)) + (fi − fi,gt)
TΣ(θi)

−1
(fi − fi,gt)

(2)

where parameters θi of covariance matrices Σ(θi) at each
grid cell are regression variables.

The neural network that defines regressor function
f (l)(EXs,CXm) is structured according to Figure 1, with a
feature encoder for each input, followed by a feature corre-
lation module, and the probabilistic flow regression module.

The encoders use a U-Net [22] structure with skip con-
nections to encode the sparse inputs into feature maps with
large receptive fields. The network has one down-sampling
chain that applies 3x3 2D convolutions in 6 groups of 3 con-
volutional layers each. Each group halves the spatial dimen-
sions of the tensor. The chain is followed by an up-sampling
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Figure 2: A sensor measurement point cloud (left) and the mean(z) channel of its corresponding top-view input feature image.

chain with the same structure as the down-sampling chain,
but each group has a skip connection input from the down-
sampling chain. The up-sampling chain contains groups up
to the spatial dimension determined by the multi-level lo-
calization procedure.

The correlation module computes the scalar products of
the feature vector at each location in the encoded sensor
feature tensor and feature vectors from a set of neighboring
locations around the same position in the map image. To
accommodate neighbor locations outside the sensor image
borders, the map data image is extracted from a larger area
such that fits all neighbors. The operation results in a vector
of scalar products per location in the sensor feature image,
where each component is associated by a neighborhood lo-
cation.

The correlation volume is input into the flow field re-
gressor network, which has a base of 5 3x3 2D convolution
layers. The base is followed by one branch of 3 convolution
layers for regressing flow field FCE , and another branch of
4 layers for regressing covariance parameters tensor θΣ.

3.3. Pose computation

To compute the sensor pose from the regressed flow
field, we compute the maximum likelihood estimate of pose
correction transform TCE . To express the likelihood, we
model the flow field vectors in terms of TCE . Given the
transform TCE and a start point pi of a flow vector, we can
express the true flow vector as

hi(TCE) = TCEpi − pi. (3)

which we use to model the regressed flow field vector as

fi = hi(TCE) + ei (4)

where ei ∼ N (0,Σθ,i) is the flow vector error, modelled
with the regressed covariance matrices. Expressed as a

probability density, we have

p(fi|TCE) = N (fi;hi(TCE),Σθ,i). (5)

Under the assumption that flow vectors fi are conditionally
independent, we can describe the distribution of the whole
flow field as

p(f1, f2, ..., fN |TCE) =

N∏
i=1

p(fi|TCE). (6)

While this assumption is not accurate in the general case, it
is functional for our purpose of weighting flow vectors for
pose computation.

The error correction transform TCE is parameterized by
translation [x, y]T and heading angle ϕ. The log likelihood
can then be written as

logL(TCE |FCE) ∝

−
N∑
i=1

([
x
y

]
− µi,j

)T
Σθ,i

−1

([
x
y

]
− µi,j

)
(7)

where µi = µi(ϕ,pi, fi) can be evaluated for any given
ϕ. We sample a set of M heading angle hypotheses
ϕj , j ∈ [1..M ] from a suitable search range, and compute
all µi,j , i ∈ [1..N ], j ∈ [1..M ]. Then x̂j , ŷj that maximize
Eq. 7 for each heading hypothesis ϕj are computed analyt-
ically as (

x̂j
ŷj

)
=

N∑
i=1

ΣΣθ,i
−1µi,j (8)

where

Σ =
( N∑
i=1

Σθ,i
−1
)−1

. (9)



The maximum likelihood estimate x̂, ŷ, ϕ̂ is found by iden-
tifying the heading hypothesis ϕj and corresponding x̂j , ŷj
that evaluates to the highest likelihood of all j. Finally, we
construct T̂CE from the estimated parameters and compute
the pose transform TMS using (1).

3.4. Multi-scale localization

To overcome issues with the limited search space con-
nected to the use of a correlation volume, with only a
smaller impact on computational performance, we build on
ideas from the optical flow method PWC-Net [26]. PWC-
Net uses a coarse-to-fine approach to successively resolve
flow in a pyramidal process. In our case the flow field is ex-
pected to follow a rigid transform, so the pose is estimated
in each iteration, and the next iteration resolution is one step
finer than the current. When the prior pose is precise, only
the finest resolution flow need to be computed, but for occa-
sional re-locating the coarser localization levels can be ap-
plied initially to bootstrap the error. In practise this means
that we train multiple versions of the localization pipeline
in figure 1.

4. Experimental results
4.1. Dataset extracted from CARLA

In this paper we rely entirely on synthetic data extracted
from the CARLA simulator [7] for training and verification.
The used version 9.8 of the CARLA simulation software
includes 7 different worlds, covering urban, rural and high-
way scenarios. The simulation allows constructing a point
cloud map that is unaffected by the quality of reference lo-
calization, and provides large quantities of annotated mea-
surements. We use the built-in LiDAR simulation module,
configured to capture 56000 points per second distributed
over 32 layers covering pitch angles between -30◦ and 10◦

relative the horizontal plane. The sensor range is set to 100
meters and rotation speed to 20Hz. For each world, a point
cloud map is aggregated by traversing the simulated LiDAR
sensor along all road segments, in 1 meter increments, po-
sitioned 2.4m above ground level. At each position incre-
ment, a full revolution scan is collected and added to the
map point cloud. The simulated LiDAR returns an instanta-
neous snapshot image that is unaffected by the sensor’s trav-
elling speed, so no rectification is needed. In the same way,
simulated online measurement data is collected, and each
training example is aggregated from 10 consecutive LiDAR
scans, equalling half a second of measurement data. All in
all we get 42870 unique sensor measurements and map crop
samples from the 7 worlds, of which all 5772 from world 4
are used for validation and all 2013 from world 2 are used
in experimental comparisons.

The dataset includes natural occlusions, such that the
proximal map contains data that is not seen in sensor mea-

surements, due to objects blocking the line of sight. Thus,
our algorithm is implicitly trained to manage such occlu-
sions, and the following evaluations test the algorithms’ per-
formance in partially occluded scenes. The opposite sce-
nario, where the measurement scans contain data from ob-
jects that are not in the map, is not included in the dataset.

4.2. Network Training details

The training data was infinitely augmented by rotation,
such that both the map image and sensor points of each
sample were rotated randomly in the horizontal plane. This
was found to be necessary to avoid overfitting, since the in-
cluded CARLA worlds have a strong emphasis on straight
roads/features/buildings in north-south or east-west direc-
tions. For training optimization we used ADAM [13] with
its standard parameters. The step size was set to a fixed
0.0003. At cold start, we found it necessary to use a reg-
ular L1 loss function to find a starting point of non-trivial
features.

4.3. Baseline algorithms

We compare our localization results with the iterative
closest point (ICP) [4], the more recent Fast Global Regis-
tration (FGR) [33] and normal distribution transform (NDT)
[20] methods. We choose point-to-point ICP since it is
a standard example of a Euclidean distance registration
method, that performs well for for fine precision local-
ization with our data sets. FGR, on the other hand, is
a minimum descriptor distance registration method, that
achieves both global and fine precision local registration.
NDT is commonly used in robotics, providing good accu-
racy also with less precise initialization. We use implemen-
tations of ICP and FGR from the Intel Open3D library [34].
With FGR we use the standard fast point feature histogram
(FPFH) descriptor [24] that provides strong local 3D fea-
tures. For ICP we use a limit of 1000 iterations, and a
stopping condition for converged solutions that limits the
number of iterations to between 30 and 300 for most local-
izations. For NDT we use the point cloud library implemen-
tation [25].

4.4. Evaluation metrics

We divide our results into translation errors and head-
ing errors. The translation error is computed as the dis-
tance between ground truth position and estimated posi-
tion in the horizontal plane. Vertical errors returned from
baselines that perform registration in 3 dimensions are dis-
carded. The heading error is extracted from the alignment
transform. Any remaining pitch or roll angle components
are disregarded for fair comparisons.
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Figure 3: Cumulative histograms of translation error (left) and heading error (right) for our method (green), point-to-point
ICP (red), fast global registration (blue) and NDT (magenta). Results are displayed for different initialization translation and
heading angle errors: Prior 1 (2.0m, 3.5◦), prior 2 (8.0m, 10◦) in dashed, and prior 3 (20.0m, 20◦) in dotted line.

4.5. Localization

Localization performance is evaluated using 3 different
initialization errors, 2m/3.5◦, 8m/10◦ and 20m/20◦ trans-
lation/heading angle errors, denoted prior 1, 2 and 3 respec-
tively. The translation vector has a 45◦ direction to make
sure that no possible bias to translation along the map coor-
dinate system axes can be exploited. The results are com-
piled in the cumulative histograms in Figure 3 that visual-
ize translation and heading localization performance for our
algorithm, referred to as flow-to-pose (F2P), in relation to
each of the baselines. We also list results in Table 1, includ-
ing numbers for the percentage of samples localized within
a 0.1, 0.3 and 1 meters threshold.

From the histograms it is apparent that the ICP baseline
performs well when initialized with a small 2m translation
error, such that no alternative solutions are near. Our F2P
still performs better than ICP in this setting, with 98.8% of
the tested samples localized within 10cm. For larger initial-
ization errors, ICP needs more iterations to converge, and
often fails by converging to a local minimum, which is an
expected result. NDT shows strong performance with fine
precision localization and mostly performs better than ICP,
but also struggles with inaccurate initialization. Our algo-
rithm on the other hand is unaffected by the larger initializa-
tion error of prior 2, and has a relatively high 89.9% success
rate on the most challenging prior 3. An apparent effect
of the coarse-to-fine approach of our method is that when
localization is successful, the accuracy is nearly the same
for any of the used initialization errors. We note that the
grid resolution of 20cm limits the fine accuracy compared
to NDT, especially in rotation accuracy, but it remains com-
petitive. The main advantage of FGR over ICP is that it has

a larger percentage of successful localizations when initial-
ization is less precise at 8 and 20m translation errors. How-
ever, FGR is hardly suited for localization with the used
validation data, since it does not localize reliably in any set-
ting. Likely, the repetitive structure in many scenes causes
ambiguity in feature matching with the handcrafted descrip-
tors of FGR. This demonstrates the difficulty in creating de-
scriptors with good multi-scale matching performance.

A side-effect of using the 2-dimensional map representa-
tion is that our method is virtually agnostic to initialization
errors in the vertical direction, whereas the baselines are
equally affected by errors in the z-coordinate.

4.6. Flow field uncertainty measure

The effect of flow vector covariance for computation of
pose from flow field is evaluated by comparing poses com-
puted by using regressed covariance matrices with poses
from covariance matrices set to identity, putting equal
weight on each flow vector. On average over the validation
set, the regressed covariance contributed to an improvement
of translation error from 3.5 to 3.2 cm and heading error
from 0.090◦ to 0.062◦. The rather modest improvements
can be explained by the flow field regressor CNN which
is trained with flow vector annotations that are computed
from the correct rigid transformation, leading to a network
that regresses flow vectors that are mostly coherent with a
rigid transformation. This means that there are rarely any
wildly incorrect flow vectors, and when errors occur they
affect neighboring flow vectors.

Qualitatively, the error covariances clearly correlate with
the regressed flow field errors as demonstrated in heatmaps
of error and covariance trace respectively in Figure 4.



Prior error trans./rot.
2m / 3.5◦ 8m / 10◦ 20m / 20◦

F2P ICP FGR NDT F2P ICP FGR NDT F2P ICP FGR NDT
Median trans. err (m) 0.032 0.053 0.174 0.019 0.033 5.071 1.088 0.067 0.036 16.69 12.70 17.36
Mean trans. err (m) 0.035 0.076 2.496 0.026 0.035 5.605 5.133 2.527 2.199 16.57 13.60 17.17
Median rot. err (deg) 0.051 0.088 0.311 0.023 0.056 2.930 1.106 0.045 0.059 31.49 14.71 17.08
Mean rot. err (deg) 0.062 0.124 1.912 0.031 0.068 8.666 6.162 2.106 0.482 26.16 19.21 16.42
% <0.1m trans. err 98.8 77.4 31.0 98.0 99.2 2.4 16.5 58.1 89.1 0.0 4.8 3.6
% <0.3m trans. err 100.0 98.0 60.9 100.0 100.0 12.1 42.3 67.7 89.9 2.4 11.7 4.0
% <1.0m trans. err 100.0 100.0 69.0 100.0 100.0 29.8 50.0 69.0 89.9 14.9 19.8 4.0
% <0.1◦ rot. err 81.9 57.3 17.3 96.4 75.8 6.5 11.3 66.9 66.9 3.2 3.2 11.3
% <0.3◦ rot. err 99.2 91.1 49.6 99.6 100.0 15.7 32.7 75.0 90.3 8.5 8.1 16.9
% <1.0◦ rot. err 100.0 100.0 71.0 100.0 100.0 35.5 49.6 80.2 91.9 19.4 15.3 22.2
Time median (s) 0.51 0.96 0.71 2.70 0.63 3.35 0.92 5.76 0.78 4.93 2.59 10.58
Time mean (s) 0.52 1.01 0.79 2.76 0.66 4.10 1.07 8.62 0.78 5.67 2.81 17.52

Table 1: Translation error, rotation error and computation time performance for our method (F2P), point-to-point ICP, fast
global registration (FGR) and NDT. Results are displayed for different initialization translation and heading angle errors.

Figure 4: Left: The error of the predicted flow field. Right:
The square root of the covariance trace at each flow vector.

4.7. Computational efficiency

We evaluate the validation data for baselines and our
method on CPU to get comparable figures. Average compu-
tation times are listed in Table 1. Our method has a clearly
bounded increase in computation time with increasing ini-
tialization errors. The increase stems from the use of coarse
localization steps with more uncertain priors. Since the
coarser localization networks use smaller dimension feature
representations, they compute fast and add only a fraction
to the total time. ICP in general needs more iterations when
initialization error is large, due to the longer path to the con-
vergence point, which results in computation time for the
largest initialization error being five times the time for lo-
calizing with the finest error. For FGR the largest contribu-
tion comes from the computation of the feature descriptors,
which is done only once. Therefore the computation time of
FGR is mostly proportional to the point cloud size, which
means that a more uncertain pose prior results in longer
computation time due to the larger map crop used. Com-
putation times of the used NDT implementation are around
5-15 times slower than our algorithm.

Overall, our method has the fastest computation times
in all scenarios. The advantage increases with larger initial
uncertainty. There is also a possibility to run the most de-
manding computations on a graphics processor which could
further lower the computation times.

5. Conclusion
We present a robust and accurate localization method,

built on learning-based optical flow field regression en-
hanced with a multi-scale coarse-to-fine refinement process.
Evaluations show that localization accuracy is similar to
normal distribution transform (NDT) and iterative closest
point (ICP), which are commonly used to refine the pose
found by other localization methods. At the same time, we
obtain global localization performance that is unmatched by
fast global registration, which shows that our learnt features,
used in a multi-scale process, can find correct correspon-
dences between sensor readings and map, even when the
geometric scene structure lacks salient features. Further-
more, the neural network implementation is competitive in
computation time, as a result of the efficient 2-dimensional
point cloud representations.
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